
  

Collections, Part Two



  

Outline for Today

● Lexicon
● Storing a collection of words.

● Set
● Storing a group of whatever you’d like.

● Map
● A powerful, fundamental container.



  

Lexicon



  

Lexicon
● A Lexicon is a container that stores a collection of 

words.
● The Lexicon is designed to answer the following 

question efficiently:

Given a word, is it contained in the Lexicon?
● The Lexicon does not support access by index. You 

can’t, for example, ask what the 137th English 
word is.

● However, it does support questions of the form 
“does this word exist?” or “do any words have this 
as a prefix?”



  

Tautonyms

● A tautonym is a word formed by 
repeating the same string twice.
● For example: murmur, couscous, papa, etc.

● What English words are tautonyms?



  

Some Aa

http://upload.wikimedia.org/wikipedia/commons/f/f1/Aa_large.jpg



  

One Bulbul



  

More than One Caracara

http://www.greglasley.net/images/CO/Crested-Caracara-F3.jpg



  

Introducing the Dikdik



  

And a Music Recommendation



  

Time-Out for Announcements!



  

Lecture Participation

● Starting today, we’ll be tracking lecture 
participation. Here’s how:
● If you’re here in person and answer questions over 

PollEV, fantastic! You’re done.
● If you can’t make it in person, you can answer a series 

of questions on Gradescope about the lecture. The 
deadline is the start of the next lecture.

● As a reminder, we will compute your grade twice: 
first with 5% allocated to lecture participation, 
and once with that 5% shifted to the final. We’ll 
then take the max of these two options.



  

Sections

● Discussion sections start this week!
● Didn’t sign up for a section? You can sign up for any 

section that has an open slot by visiting the CS198 
website (cs198.stanford.edu).

● If your section time doesn’t work for you, you can 
also switch into any section with available space. 
Visit cs198.stanford.edu to do this.

● Still doesn’t work for you? Ping Neel!
● Each week we’ll release a set of section 

problems on the course website. These are not 
graded, but we recommend you read over them 
before your section.



  

Late Policy

● Everyone has four free “late days” that 
can be used to extend assignment 
deadlines.

● Each late day grants an automagic 24-
hour extension on an assignment.

● You can use at most two late days per 
assignment; nothing will be accepted more 
than 48 hours after the normal deadline.

● Check the syllabus for more information.



  

Assignment Grading
● Your coding assignments are graded on both functionality and on 

coding style.

● The functionality score is based on correctness.
● Do your programs produce the correct output?
● Do they work on all inputs?
● etc.

● The style score is based on how well your program is written.
● Are your programs well-structured?
● Do you decompose problems into smaller pieces?
● Do you use variable naming conventions consistently?
● etc.

● We have a style guide up the course website, as well as a pre-submit 
checklist to make sure everything is ready to go before you formally 
submit. Check these out – they’re very useful!



  

▶



  

Set



  

Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.
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unordered collection of 
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and removed. Duplicates 
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Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

Set<int> values = {137, 106, 42};
 

values += 271;
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Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

Set<int> values = {137, 106, 42};
 

values += 271;
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Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

Set<int> values = {137, 106, 42};
 

values += 271;
values += 271;  
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Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

Set<int> values = {137, 106, 42};
 

values += 271;
values += 271; // Has no effect 
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Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

Set<int> values = {137, 106, 42};
 

values += 271;
values += 271; // Has no effect 
 

values -= 106;
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Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

Set<int> values = {137, 106, 42};
 

values += 271;
values += 271; // Has no effect 
 

values -= 106;
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Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

Set<int> values = {137, 106, 42};
 

values += 271;
values += 271; // Has no effect 
 

values -= 106;
values -= 103;
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42

271



  

Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

Set<int> values = {137, 106, 42};
 

values += 271;
values += 271; // Has no effect 
 

values -= 106;
values -= 103; // Has no effect

137

42

271



  

Set

● The Set represents an 
unordered collection of 
distinct elements.

● Elements can be added 
and removed. Duplicates 
aren’t allowed.

● You may find it helpful to 
interpret += as “ensure 
this item is there” and -= 
as “ensure this item isn’t 
there.”

137

42

271



  

Set

● Sets make it easy to 
check if you’ve seen 
something before.

● You can loop over the 
contents of a set with a 
range-based for loop.

137
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271



  

Set

● Sets make it easy to 
check if you’ve seen 
something before.

● You can loop over the 
contents of a set with a 
range-based for loop.

if (values.contains(137)) {
    cout << "<(^_^)>" << endl;
}
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Set

● Sets make it easy to 
check if you’ve seen 
something before.

● You can loop over the 
contents of a set with a 
range-based for loop.

if (values.contains(137)) {
    cout << "<(^_^)>" << endl;
}
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Set

● Sets make it easy to 
check if you’ve seen 
something before.

● You can loop over the 
contents of a set with a 
range-based for loop.

if (values.contains(137)) {
    cout << "<(^_^)>" << endl;
}

for (int value: values) {
    cout << value << endl;
}

137

42

271



  

Operations on Sets

● You can add a value to a Set by writing

set += value;
● You can remove a value from a Set by writing

set -= value;
● You can check if a value exists in a Set by writing

set.contains(value)
● Many more operations are available (union, 

intersection, difference, subset, etc.). Check the 
Stanford C++ Library Reference guide for 
details!



  

Application: Word Economy

● Some long words are made of very few 
letters.
● “caracara” has length eight, but only uses the 

letters c, r, and a.
● The character efficiency of a word is the 

ratio of its length to the number of different 
letters it contains.
● “caracara” has efficiency ⁸/₃ ≈ 2.67.

● What is the highest-efficiency English word?



  

Map



  

Map
● The Map class 

represents a set of 
key/value pairs.
● It’s analogous to dict in 

Python, to Map in Java, 
and to objects (used as 
key/value stores) in 
JavaScript.

● Each key is associated 
with a value.

● Given a key, we can 
look up the associated 
value.
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Map<string, int> heights;
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● The Map class 
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Map
● The Map class 

represents a set of 
key/value pairs.
● It’s analogous to dict in 

Python, to Map in Java, 
and to objects (used as 
key/value stores) in 
JavaScript.

● Each key is associated 
with a value.

● Given a key, we can 
look up the associated 
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
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Map
● The Map class 

represents a set of 
key/value pairs.
● It’s analogous to dict in 

Python, to Map in Java, 
and to objects (used as 
key/value stores) in 
JavaScript.

● Each key is associated 
with a value.

● Given a key, we can 
look up the associated 
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
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Map
● The Map class 

represents a set of 
key/value pairs.
● It’s analogous to dict in 

Python, to Map in Java, 
and to objects (used as 
key/value stores) in 
JavaScript.

● Each key is associated 
with a value.

● Given a key, we can 
look up the associated 
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;
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Map
● The Map class 

represents a set of 
key/value pairs.
● It’s analogous to dict in 

Python, to Map in Java, 
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with a value.
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Map
● The Map class 

represents a set of 
key/value pairs.
● It’s analogous to dict in 

Python, to Map in Java, 
and to objects (used as 
key/value stores) in 
JavaScript.

● Each key is associated 
with a value.

● Given a key, we can 
look up the associated 
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;

cout << heights["Chile"] << endl;
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Map
● We can loop over 

the keys in a map 
with a range-
based for loop.

● We can check 
whether a key is 
present in the 
map.
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Map
● We can loop over 

the keys in a map 
with a range-
based for loop.

● We can check 
whether a key is 
present in the 
map.

for (string key: heights) {
   cout << heights[key] << endl;
}
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Map
● We can loop over 

the keys in a map 
with a range-
based for loop.

● We can check 
whether a key is 
present in the 
map.

for (string key: heights) {
   cout << heights[key] << endl;
}

 
    
 

Serbia

UAE

Chile

153

828

300

Keys Values



  

Map
● We can loop over 

the keys in a map 
with a range-
based for loop.

● We can check 
whether a key is 
present in the 
map.

for (string key: heights) {
   cout << heights[key] << endl;
}

if (heights.containsKey("Mali") {
   cout << "BCEAO" << endl;
}

Serbia

UAE

Chile

153

828

300

Keys Values



  

What’d I Say?



  

What’d I Say?

● Our program will prompt the user to 
repeatedly type in text.

● Each time, we’ll report how many 
previous times the user has typed in that 
text.

● We’ll use a Map to track frequencies!



  

Map Autoinsertion



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
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      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
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Map Autoinsertion

  Map<string, int> freqMap;
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Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
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Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text

Oh no! I don’t
know what that is!



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text

Let’s pretend
I already had that

key here.

"Hello"



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text

The values are
all ints, so I’ll pick

zero.

"Hello" 0



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text

Phew! Crisis
averted!

"Hello" 0



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text
"Hello" 0



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text
"Hello" 0



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text
"Hello" 0

Cool as a cucumber.

⊂(▀¯▀ )⊂



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text
"Hello" 1

Cool as a cucumber.

⊂(▀¯▀ )⊂



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap "Hello"text
"Hello" 1



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1

"Goodbye"text



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }
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Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }
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Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1

"Goodbye"text

Oh no, not again!



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1

"Goodbye"text

I’ll pretend
I already had that

key.

"Goodbye" 0



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }
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"Goodbye"text
"Goodbye" 0



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }
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"Goodbye"text
"Goodbye" 0



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1

"Goodbye"text
"Goodbye" 0

Chillin’ like a villain.

⊂(▀¯▀ )⊂



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1

"Goodbye"text
"Goodbye" 1

Chillin’ like a villain.

⊂(▀¯▀ )⊂



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1

"Goodbye"text
"Goodbye" 1



  

Map Autoinsertion

  Map<string, int> freqMap;
  while (true) {
      string text = getLine("Enter some text: ");
      cout << "Times seen: " << freqMap[text] << endl;
      freqMap[text]++;
  }

 

freqMap
"Hello" 1

"Goodbye" 1



  

Map Autoinsertion

● If you look up 
something in a Map using 
square brackets,
● if the key already exists, 

its associated value is 
returned; and

● if the key doesn’t exist, 
it’s added in with a 
“sensible default” value, 
and that value is then 
returned.

● This can take some 
getting used to, but it’s 
surprisingly convenient.

Type Default

int 0

double 0.0

bool false

string ""

Any Container Empty container
of that type

char (it's
complicated)



  

Grouping by First Letters



  

Grouping by First Letters

atlatl

axolotl

…

ballista

barrista

creche

ceviche

…

…

A

B

C



  

Grouping by First Letters

● We’ll partition all English words into groups 
based on their first letter.

● To do so, we’ll create a Map that associates 
each letter with words starting with that letter.

● What specific type of Map should it be (e.g. 
Map<int, double>, Map<string, string>, etc.)?

Answer online at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23


  

Map Autoinsertion

  Lexicon english("EnglishWords.txt");

  Map<char, Lexicon> wordsByFirstLetter;
  for (string word: english) {
     wordsByFirstLetter[word[0]] += word;
  }



  

Map Autoinsertion
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  for (string word: english) {
     wordsByFirstLetter[word[0]] += word;
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"first"word
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  Map<char, Lexicon> wordsByFirstLetter;
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Map Autoinsertion

  Lexicon english("EnglishWords.txt");

  Map<char, Lexicon> wordsByFirstLetter;
  for (string word: english) {
     wordsByFirstLetter[word[0]] += word;
  }

wordsByFirstLetter

"first"word

Oops, no f’s here.



  

Map Autoinsertion

  Lexicon english("EnglishWords.txt");

  Map<char, Lexicon> wordsByFirstLetter;
  for (string word: english) {
     wordsByFirstLetter[word[0]] += word;
  }

wordsByFirstLetter

"first"word
Let’s insert
that key.

'f'



  

Map Autoinsertion

  Lexicon english("EnglishWords.txt");

  Map<char, Lexicon> wordsByFirstLetter;
  for (string word: english) {
     wordsByFirstLetter[word[0]] += word;
  }

wordsByFirstLetter

"first"word
I’ll give you a
blank Lexicon.

'f' {  }
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  Map<char, Lexicon> wordsByFirstLetter;
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'f' { "first" }
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  Lexicon english("EnglishWords.txt");

  Map<char, Lexicon> wordsByFirstLetter;
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'f' { "first" }

"foremost"word
Easy peasy.

⊂(▀¯▀ )⊂
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  for (string word: english) {
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  Map<char, Lexicon> wordsByFirstLetter;
  for (string word: english) {
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  Map<char, Lexicon> wordsByFirstLetter;
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  Lexicon english("EnglishWords.txt");

  Map<char, Lexicon> wordsByFirstLetter;
  for (string word: english) {
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  Lexicon english("EnglishWords.txt");

  Map<char, Lexicon> wordsByFirstLetter;
  for (string word: english) {
     wordsByFirstLetter[word[0]] += word;
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'i' { }
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Quokka



  

Quokka Quincunx



  

Quarter Quokka Quincunx



  

Your Action Items

● Read Chapter 5.
● It’s all about container types, and it’ll fill in 

any remaining gaps from this week.
● Keep Working on Assignment 1.

● If you’re following our recommended 
timetable, you’ll have finished Debugger 
Warmups and Fire at this point and will be 
working on Only Connect.



  

Next Time

● Stacks and Queues
● Specialized containers for specialized 

sequences.
● Applications to text analysis and music.
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