

Collections, Part Two

Outline for Today

● Lexicon
● Storing a collection of words.

● Set
● Storing a group of whatever you’d like.

● Map
● A powerful, fundamental container.

Lexicon

Lexicon
● A Lexicon is a container that stores a collection of

words.
● The Lexicon is designed to answer the following

question efficiently:

Given a word, is it contained in the Lexicon?
● The Lexicon does not support access by index. You

can’t, for example, ask what the 137th English
word is.

● However, it does support questions of the form
“does this word exist?” or “do any words have this
as a prefix?”

Tautonyms

● A tautonym is a word formed by
repeating the same string twice.
● For example: murmur, couscous, papa, etc.

● What English words are tautonyms?

Some Aa

http://upload.wikimedia.org/wikipedia/commons/f/f1/Aa_large.jpg

One Bulbul

More than One Caracara

http://www.greglasley.net/images/CO/Crested-Caracara-F3.jpg

Introducing the Dikdik

And a Music Recommendation

Time-Out for Announcements!

Lecture Participation

● Starting today, we’ll be tracking lecture
participation. Here’s how:
● If you’re here in person and answer questions over

PollEV, fantastic! You’re done.
● If you can’t make it in person, you can answer a series

of questions on Gradescope about the lecture. The
deadline is the start of the next lecture.

● As a reminder, we will compute your grade twice:
first with 5% allocated to lecture participation,
and once with that 5% shifted to the final. We’ll
then take the max of these two options.

Sections

● Discussion sections start this week!
● Didn’t sign up for a section? You can sign up for any

section that has an open slot by visiting the CS198
website (cs198.stanford.edu).

● If your section time doesn’t work for you, you can
also switch into any section with available space.
Visit cs198.stanford.edu to do this.

● Still doesn’t work for you? Ping Neel!
● Each week we’ll release a set of section

problems on the course website. These are not
graded, but we recommend you read over them
before your section.

Late Policy

● Everyone has four free “late days” that
can be used to extend assignment
deadlines.

● Each late day grants an automagic 24-
hour extension on an assignment.

● You can use at most two late days per
assignment; nothing will be accepted more
than 48 hours after the normal deadline.

● Check the syllabus for more information.

Assignment Grading
● Your coding assignments are graded on both functionality and on

coding style.

● The functionality score is based on correctness.
● Do your programs produce the correct output?
● Do they work on all inputs?
● etc.

● The style score is based on how well your program is written.
● Are your programs well-structured?
● Do you decompose problems into smaller pieces?
● Do you use variable naming conventions consistently?
● etc.

● We have a style guide up the course website, as well as a pre-submit
checklist to make sure everything is ready to go before you formally
submit. Check these out – they’re very useful!

▶

Set

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

137

42

106

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

values += 271;

137

42

106

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

values += 271;

137

42

106

271

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

values += 271;
values += 271;

137

42

106

271

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

values += 271;
values += 271; // Has no effect

137

42

106

271

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

values += 271;
values += 271; // Has no effect

values -= 106;

137

42

106

271

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

values += 271;
values += 271; // Has no effect

values -= 106;

137

42

271

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

values += 271;
values += 271; // Has no effect

values -= 106;
values -= 103;

137

42

271

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

Set<int> values = {137, 106, 42};

values += 271;
values += 271; // Has no effect

values -= 106;
values -= 103; // Has no effect

137

42

271

Set

● The Set represents an
unordered collection of
distinct elements.

● Elements can be added
and removed. Duplicates
aren’t allowed.

● You may find it helpful to
interpret += as “ensure
this item is there” and -=
as “ensure this item isn’t
there.”

137

42

271

Set

● Sets make it easy to
check if you’ve seen
something before.

● You can loop over the
contents of a set with a
range-based for loop.

137

42

271

Set

● Sets make it easy to
check if you’ve seen
something before.

● You can loop over the
contents of a set with a
range-based for loop.

if (values.contains(137)) {
 cout << "<(^_^)>" << endl;
}

137

42

271

Set

● Sets make it easy to
check if you’ve seen
something before.

● You can loop over the
contents of a set with a
range-based for loop.

if (values.contains(137)) {
 cout << "<(^_^)>" << endl;
}

137

42

271

Set

● Sets make it easy to
check if you’ve seen
something before.

● You can loop over the
contents of a set with a
range-based for loop.

if (values.contains(137)) {
 cout << "<(^_^)>" << endl;
}

for (int value: values) {
 cout << value << endl;
}

137

42

271

Operations on Sets

● You can add a value to a Set by writing

set += value;
● You can remove a value from a Set by writing

set -= value;
● You can check if a value exists in a Set by writing

set.contains(value)
● Many more operations are available (union,

intersection, difference, subset, etc.). Check the
Stanford C++ Library Reference guide for
details!

Application: Word Economy

● Some long words are made of very few
letters.
● “caracara” has length eight, but only uses the

letters c, r, and a.
● The character efficiency of a word is the

ratio of its length to the number of different
letters it contains.
● “caracara” has efficiency ⁸/₃ ≈ 2.67.

● What is the highest-efficiency English word?

Map

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;

Serbia 153

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;

Serbia 153

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;

Serbia

UAE

153

360

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;

Serbia

UAE

153

360

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;

Serbia

UAE

Chile

153

360

300

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;

Serbia

UAE

Chile

153

360

300

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;

Serbia

UAE

Chile

153

828

300

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;

Serbia

UAE

Chile

153

828

300

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;

Serbia

UAE

Chile

153

828

300

Keys Values

Map
● The Map class

represents a set of
key/value pairs.
● It’s analogous to dict in

Python, to Map in Java,
and to objects (used as
key/value stores) in
JavaScript.

● Each key is associated
with a value.

● Given a key, we can
look up the associated
value.

Map<string, int> heights;

heights["Serbia"] = 153;
heights["UAE"] = 360;
heights["Chile"] = 300;
heights["UAE"] = 828;

cout << heights["Chile"] << endl;

Serbia

UAE

Chile

153

828

300

Keys Values

Map
● We can loop over

the keys in a map
with a range-
based for loop.

● We can check
whether a key is
present in the
map.

Serbia

UAE

Chile

153

828

300

Keys Values

Map
● We can loop over

the keys in a map
with a range-
based for loop.

● We can check
whether a key is
present in the
map.

for (string key: heights) {
 cout << heights[key] << endl;
}

Serbia

UAE

Chile

153

828

300

Keys Values

Map
● We can loop over

the keys in a map
with a range-
based for loop.

● We can check
whether a key is
present in the
map.

for (string key: heights) {
 cout << heights[key] << endl;
}

Serbia

UAE

Chile

153

828

300

Keys Values

Map
● We can loop over

the keys in a map
with a range-
based for loop.

● We can check
whether a key is
present in the
map.

for (string key: heights) {
 cout << heights[key] << endl;
}

if (heights.containsKey("Mali") {
 cout << "BCEAO" << endl;
}

Serbia

UAE

Chile

153

828

300

Keys Values

What’d I Say?

What’d I Say?

● Our program will prompt the user to
repeatedly type in text.

● Each time, we’ll report how many
previous times the user has typed in that
text.

● We’ll use a Map to track frequencies!

Map Autoinsertion

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text

Oh no! I don’t
know what that is!

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text

Let’s pretend
I already had that

key here.

"Hello"

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text

The values are
all ints, so I’ll pick

zero.

"Hello" 0

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text

Phew! Crisis
averted!

"Hello" 0

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text
"Hello" 0

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text
"Hello" 0

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text
"Hello" 0

Cool as a cucumber.

⊂(▀¯▀)⊂

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text
"Hello" 1

Cool as a cucumber.

⊂(▀¯▀)⊂

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap "Hello"text
"Hello" 1

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text

Oh no, not again!

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text

I’ll pretend
I already had that

key.

"Goodbye" 0

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text
"Goodbye" 0

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text
"Goodbye" 0

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text
"Goodbye" 0

Chillin’ like a villain.

⊂(▀¯▀)⊂

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text
"Goodbye" 1

Chillin’ like a villain.

⊂(▀¯▀)⊂

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye"text
"Goodbye" 1

Map Autoinsertion

 Map<string, int> freqMap;
 while (true) {
 string text = getLine("Enter some text: ");
 cout << "Times seen: " << freqMap[text] << endl;
 freqMap[text]++;
 }

freqMap
"Hello" 1

"Goodbye" 1

Map Autoinsertion

● If you look up
something in a Map using
square brackets,
● if the key already exists,

its associated value is
returned; and

● if the key doesn’t exist,
it’s added in with a
“sensible default” value,
and that value is then
returned.

● This can take some
getting used to, but it’s
surprisingly convenient.

Type Default

int 0

double 0.0

bool false

string ""

Any Container Empty container
of that type

char (it's
complicated)

Grouping by First Letters

Grouping by First Letters

atlatl

axolotl

…

ballista

barrista

creche

ceviche

…

…

A

B

C

Grouping by First Letters

● We’ll partition all English words into groups
based on their first letter.

● To do so, we’ll create a Map that associates
each letter with words starting with that letter.

● What specific type of Map should it be (e.g.
Map<int, double>, Map<string, string>, etc.)?

Answer online at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

"first"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

"first"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

"first"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

"first"word

Oops, no f’s here.

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

"first"word
Let’s insert
that key.

'f'

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

"first"word
I’ll give you a
blank Lexicon.

'f' { }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

"first"word

'f' { }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter

"first"word

'f' { "first" }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first" }

"first"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first" }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first" }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first" }

"foremost"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first" }

"foremost"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first" }

"foremost"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first" }

"foremost"word
Easy peasy.

⊂(▀¯▀)⊂

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first" }

"foremost"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

"foremost"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

"foremost"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

"initial"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

"initial"word

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

"initial"word

'i' { }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

"initial"word

'i' { }

Map Autoinsertion

 Lexicon english("EnglishWords.txt");

 Map<char, Lexicon> wordsByFirstLetter;
 for (string word: english) {
 wordsByFirstLetter[word[0]] += word;
 }

wordsByFirstLetter
'f' { "first", "foremost" }

"initial"word

'i' { "initial" }

Quokka

Quokka Quincunx

Quarter Quokka Quincunx

Your Action Items

● Read Chapter 5.
● It’s all about container types, and it’ll fill in

any remaining gaps from this week.
● Keep Working on Assignment 1.

● If you’re following our recommended
timetable, you’ll have finished Debugger
Warmups and Fire at this point and will be
working on Only Connect.

Next Time

● Stacks and Queues
● Specialized containers for specialized

sequences.
● Applications to text analysis and music.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125

